A PARTICLE METHOD WITH GLOBAL SUPERCONVERGENCE

S. Haoa, W. Hanb

^aDepartment of Mechanical Engineering/Department of Materials Science Engineering Northwesteren University, Evanston, Illinois 60208 suhao@northwestern.edu

> bDepartment of Mathematics University of Iowa Iowa City, IA 52242 whan@math.uiowa.edu

A method to gain a global superconvergence has been developed for meshfree methods [1, 2] and for the MPFEM – a finite element-based particle method [3]. We first discuss the definition of "superconvergence". In general a particle method approximates solution via the relation:

$$u^{h}(x) = \sum_{i=1}^{N} F_{i}(x, y_{i}) \cdot u_{i} \qquad \text{and} \qquad F_{i}(x, y_{i}) = \phi(y_{i} - x) \cdot c(x) \cdot \Delta v_{i}$$
 (1)

where $\phi(z)$, c(x), and Δv_i are window function, correction function, and a weight at y_i . The relation (1) can be interpreted as the transformation from a set of samples u_i to the approximated solution u^h through the filter F. The convergence rate of u^h , e.g. L_2 norm, is determined by the functional properties of c(x) and $\phi(y_i - x)$ through the satisfaction of the imposed consistence conditions [4-6]. We assume that c(x) is a m_c order polynomial and the degree of freedom of $\phi(z)$, i.e., the number of the undetermined constants in $\phi(z)$, is m_{ϕ} . Then, in general the convergence rates of (1) for $u^h(x)$ and its n^{th} derivatives, denoted as "m" and " m_n ", respectively, are: $m_n = m_c + m_{\phi} + 1 - n$

For example, when $\phi(z)$ is defined by a 5-order spline function $(m_{\phi}=0)$ and c(x) is a linear function $(m_c=1)$, usually the L_2 norm for the meshfree methods with (1) is 2.

Analogue to the superconvergence analysis in finite element [6], we define a particle method with superconvergence when

$$m > m_c + m_\phi + 1$$
 and/or $m_n > m_c + m_\phi + 1 - n$

In the proposed method, the global superconvergence is achieved by a two-level interpolation scheme that allows the satisfaction of higher order reproducing condition for given m_{ϕ} and m_{c} .

References

- [1] T. Belytschko, Y. Lu, and L. Gu, Int. J. for Num. Methods Eng., v. 37, p. 229-256, 1994.
- [2] W. K. Liu, S. Jun, Y. F. Zhang, Int. J. for Num. Methods in Fluids, 20: p. 1081-1106, 1995.
- [3] S. Hao, H. S. Park, W. K. Liu, Int. J. for Num. Methods Eng., 53(8): p. 1937-1958, 2002.
- [4] Belytschko, T., et al., Int. J. for Num. Methods Eng., 43(5): p. 785-803, 1998.
- [5] Liu, W.K., Chen, Y.J., Uras, R.A., and Chang, C.T., *Comp. Methods in Appl. Mech. Eng.*, 139(1-4): p. 91-157, 1996.
- [6] Babuska, I., and Melenk, J.M., v. 40, p. 727-758, 1996.
- [7] Wahlbin, L.B., *Superconvergence in Galerkin Finite Element Methods*. Lecture Notes in Mathematics 1605, ed. A.D. Heidelberg and F.T. Groningen. 1995: Springer.